Hyperfine Interactions

Interaction between the electromagnetic moments of a nucleus and electromagnetic fields acting on the nucleus

I = nuclear spin
 μ = magn. dipole moment
 Q = electric quadrupole moment

Magnetic field magnetic HFI

Electric field

electric HFI

Hyperfine Interactions

Electric and magnetic fields at nuclear sites may be produced by:

- (i) the electrons of the atom under consideration
 → Hyperfine structure of optical transitions
- (ii) External sources (magnetic fields)
 → nuclear structure studies
- (iii) The electrons of nearby atoms
 - ➔ Information on chemical and solid state properties

Hyperfine structure of electronic states of atoms

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012

Hyperfine splitting of the D₂-line of Na

Detection in the resonance radiation of a Na-atomic beam excited by a frequency-variable dye laser

Hyperfine Interactions in Condensed Matter

Electric HF interactions

Magnetic HF interactions

Static

non-cubic solids (metals, semiconductors,isolators Defects in cubic solids

Dynamic

Atomic motion in solids, liquids and gases e.g. metal-hydrogen systems

Static

Ferromagnets Paramagnets at low temperatures Knight Shift

Dynamic

Paramagnets at finite temperatures Paramagnetische Lösungen Spinfluctuations in ferromagnets

Electric Hyperfine Interaction

Interaction between the charge distribution of a nucleus $\rho_N(r)$ and the potential $\Phi(r)$ created by the charges surrounding the nucleus

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012

Evaluation of the interaction integral $E_{el} = \int \rho_N(r) \Phi(r) d^3r$

Expansion of the energy (into terms of decreasing magnitude):

$$E_{el} = E_{el}^{(0)} + E_{el}^{(1)} + E_{el}^{(2)} + \cdots$$

monopole term dipole term = 0 quadrupole term

$$\mathsf{E}_{\mathsf{el}}^{(2)} = \frac{1}{2} \sum_{\alpha,\beta} \left(\frac{\delta^2 \Phi}{\delta x_{\alpha} \ \delta x_{\beta}} \right)_0 \int \rho_{\mathsf{N}}(\mathsf{r}) x_{\alpha} \ x_{\beta} \ \mathsf{d}^3\mathsf{r}$$

point charge

 $\begin{pmatrix} \Phi_{\alpha\alpha} & \Phi_{\beta\alpha} & \Phi_{\gamma\alpha} \\ \Phi_{\alpha\beta} & \Phi_{\beta\beta} & \Phi_{\gamma\beta} \\ \Phi_{\alpha\gamma} & \Phi_{\beta\gamma} & \Phi_{\gamma\gamma} \end{pmatrix}$ Principal axes transformation $\begin{pmatrix} \Phi_{\alpha'\alpha'} & 0 & 0 \\ 0 & \Phi_{\beta'\beta'} & 0 \\ 0 & 0 & \Phi_{\gamma'\gamma'} \end{pmatrix}$

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012

The second order term of the energy

After principal axis-transformation (only diagonal terms):

$$E_{el}^{(2)} = \frac{1}{2} \sum_{\alpha} \left(\frac{\delta^2 \Phi}{\delta x_{\alpha}^2} \right)_0 \int \rho_N(r) \ x_{\alpha}^2 \ d^3r = \frac{1}{2} \sum_{\alpha} \Phi_{\alpha\alpha} \int \rho_N(r) \ x_{\alpha}^2 \ d^3r$$

Decomposition of the nuclear volume into a spherical and a non-spherical part

The electric quadrupole moment **Q** describes the deviation of the nuclear charge distribution from sphericity

Classical definition:

$$Q = Q_{zz} = \frac{1}{e} \int (3z^2 - r^2) \rho_N(\mathbf{r}) d^3 r$$

$$\int \rho_N(\mathbf{r}) d^3 r = Ze$$

w. Forker, Nuclear Methods in Solid State Research, CBPF 2012

The effect of the finite spherical charge distribution of the nucleus

$$E_{el}^{(2a)} = \frac{1}{6} (\Delta \Phi)_{r=0} \int \rho_{N}(r) r^{2} d^{3}r$$

Possion equation

$$(\Delta \Phi)_{\mathbf{r}=0} = -\frac{\rho_{\mathbf{el}}(0)}{\varepsilon_0} = \frac{\mathbf{Z}\mathbf{e}}{\varepsilon_0} |\Psi(0)|$$

Mean quadratic nuclear radius :

$$\langle \mathbf{r}_{\mathbf{N}}^2 \rangle = \frac{1}{\mathbf{Ze}} \int \mathbf{r}^2 \rho_{\mathbf{N}}(\mathbf{r}) \mathbf{d}^3 \mathbf{r}$$

Energy-shift caused by the finite nuclear size

Isotope- and Isomer shift

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012

The quadrupole interaction

$$E_Q^{(2)} = \frac{e}{6} \sum_{\alpha} V_{\alpha\alpha} Q_{\alpha\alpha}$$

The tensor of the electric field gradient (EFG) caused by charges outside the nucleus

$$\begin{pmatrix} V_{x'x'} & V_{x'y'} & V_{x'z'} \\ V_{y'x'} & V_{y'y'} & V_{y'z'} \\ V_{z'x'} & V_{z'y'} & V_{z'z'} \end{pmatrix}$$

Prinipal axes transformation

Choice of principal axes $\left| \mathbf{V}_{xx} \right| \le \left| \mathbf{V}_{yy} \right| \le \left| \mathbf{V}_{zz} \right|$

Since $\sum_{\alpha} V_{\alpha\alpha} = 0$ the EFG is completely described by 2 parameters:

(i) Maximum component V_{zz}

 $\begin{pmatrix} V_{xx} & & \\ & V_{yy} & \\ & & V_{zz} \end{pmatrix}$

(ii) Asymmetry parameter

$$\eta = \frac{V_{xx} - V_{yy}}{V_{-}}, 0 \le \eta \le 1$$

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012

The electric field gradient (EFG) produced by a point charge (x,y,z) $V(r) = \frac{Ze}{r} = \frac{Ze}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}}$ potential Ze 🦯 $V_{x} = \frac{\partial V}{\partial x} = Ze \frac{(x - x_{0})}{((x - x_{0})^{2} + (y - y_{0})^{2} + (z - z_{0})^{2})^{3/2}}$ x- component of the electric field xy- component of $V_{xy} = \frac{\partial^2 V}{\partial x \partial y} = Ze \frac{3(x - x_0)(y - y_0)}{((x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2)^{5/2}}$ the EFG tensor diagonal component $V_{xx} = \frac{\partial^2 V}{\partial x^2} = Ze \frac{3(x - x_0)^2 - r^2}{((x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2)^{5/2}}$ of the EFG tensor

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012

Electric quadrupole interaction

Order of magnitude of electric field gradients

$$\mathsf{E}_{\mathsf{Q}} = \hbar \, \omega_{\mathsf{Q}} = \frac{\mathsf{e} \mathsf{Q} \mathsf{V}_{zz}}{\mathsf{4} \mathsf{I} (\mathsf{2} \mathsf{I} - \mathsf{1})} \qquad \qquad \mathsf{V}_{zz} = \frac{\mathsf{4} \mathsf{I} (\mathsf{2} \mathsf{I} - \mathsf{1})}{\mathsf{e} \mathsf{Q}} \, \mathsf{E}_{\mathsf{Q}}$$

Sensivity of HFI techniques: $E_Q \ge 10^{-8} \text{ eV}$

Assumption : Q = 1 b, I = 5/2 $V_{zz} = \frac{10}{e \cdot 10^{-24} \text{ cm}^2} 10^{-8} \text{ eV}$ $V_{zz} \ge 10^{17} \text{ V/cm}^2$

Sources of electric field gradients of sufficient strength

- EFG produced by external charges is too weak
- Charge distribution in solids $V_{\tau\tau}^{\text{solid}}$
- Deformation of closed elctronic shells $(1 \gamma_{\infty}) V_{zz}^{solid}$ Sternheimer-Korrektur $\gamma_{\infty} = 10 \dots 70$
- Unclosed electronic shells with angular momentum J $V_{zz} = -e\langle r^{-3} \rangle \cdot \langle J \| \alpha \| J \rangle \cdot J(2J-1)$
- Example: Rare earth ions (4f-elements); Dy^{3+} : 4f⁹, J = 15/2, $V_{zz} = 6.10^{18} \text{ V/cm}^2$

Phase Identification and Structure Information by Measurement of **Electric Quadrupole Interaction - Example: ZrO₂** ZrO₂-structures Frequency and asymmetry (ZHIV) >¹⁰⁰⁰ $\begin{array}{l} \nu_q \neq 0 \\ \eta \neq 0 \end{array}$ monoclinic 900 $v_q \neq 0$ tetragonal 800 η= 0 0,5 700asymmetry 0.4600 cubic $v_q = 0$ 0.3 500 500 1000 2000 1500 T (K) fraction of *t*-ZrO₂ 1.0 The $m \rightarrow t$ phase transition of ZrO_2 0.5 0.0 1300 1400 1500 1000 1100 1200 T (K)

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012

Magnetic Hyperfine interaction:

The Magnetic Splitting of Nuclear States

$$\Delta \mathbf{E} = \mathbf{g} \,\boldsymbol{\mu}_{\mathbf{N}} \mathbf{B} \mathbf{z}$$
$$= \hbar \,\boldsymbol{\omega}_{\mathbf{L}}$$

_ ~ .. **D**_

Larmor frequency $\omega_{I} = \Delta E / \hbar = -g \mu_{N} Bz / \hbar$

Order of magnitude: $B_{ext} = 100 \text{ kG}, g = 1, \mu_N = 3.15 \ 10^{-12} \text{ eV}/\text{ G}$

$$\Delta \mathbf{E}_{\mathbf{M}} = \hbar \boldsymbol{\omega}_{\mathbf{L}} = \mathbf{g} \boldsymbol{\mu}_{\mathbf{N}} \mathbf{B}_{\mathbf{ext}} = \mathbf{3.15} \cdot \mathbf{10}^{-7} \mathbf{eV}$$

The nuclear parameter: the magnetic dipole moment μ

Moving charges = currents \rightarrow magnetic moment

Magnetic Dipole Moments

Classical:
$$\vec{\mu} = -\frac{e}{2m_0c}\vec{I} = \gamma \vec{I}, \quad \gamma = \text{gyromagnet ic ratio}, \quad I = \text{ang. momentum}$$

Quantum mechanics for free-electron states |I, M=I>:

$$\mu = \left\langle I, M = I \middle| \mu_z \middle| I, M = I \right\rangle = \gamma \hbar I = g \mu_B I \qquad \mu_B = \frac{e \hbar}{2m_e c} = 5.788 \text{ x} 10^{-15} \frac{\text{MeV}}{\text{Gauss}}$$

g-factor Bohr magneton

Correspondingly for protons:

$$\vec{\mu}_{\rm p} = \frac{e\hbar}{2m_{\rm p}c}\frac{\vec{\rm I}}{\hbar} = g\,\mu_{\rm N}\,\vec{\rm I}$$

$$\mu_{N} = \frac{e\hbar}{2m_{N}c} = 3.153 \times 10^{-18} \frac{MeV}{Gauss}$$
$$\mu_{N} = nuclear magneton$$

Magnetic Dipole Moments

Free particles:
$$\vec{\mu}_{e,p} = g \ \mu_{B,N} \ \vec{I}$$

g-factor	Elektron	Proton	Neutron
Orbital <i>I</i> : g _l	-1	1	0
Spin <i>s</i> : g _s	-2.0023	5,5856	-3,8263
g _s -Dirac theory	-2(1+α/2π+)	1	0

anomalous α = fine structure constant

For magnetic moments in nuclei, the spin-orbit coupling $l + \vec{s}$ leads to the g factor

$$g = g_l \pm \frac{g_s - g_L}{2l + 1} \text{ for } l \pm \frac{1}{2}$$

Experimental results and Schmidt lines

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012

The magnetic hyperfine fielde B_{hf}

The magnetic hyperfine field B_{hf}

$$\mathbf{B}_{hf} = \mathbf{B}_{ext} + \mathbf{B}_{orb} + \mathbf{B}_{contact} + \mathbf{B}_{dip} + \mathbf{B}_{Lorentz} + \mathbf{B}_{DM} + \dots$$

$$\mathbf{J} \qquad \mathbf{Orbital field} \qquad \mathbf{B}_{orb} = -2\mu_B \langle r^{-3} \rangle \langle J || N || J \rangle \langle J \rangle$$
Angular momentum : $\vec{J} = \vec{L} + \vec{S}$
Angular momentum : $\vec{J} = \vec{L} + \vec{S}$
Angular momentum : $\vec{J} = \vec{L} + \vec{S}$
Argunar momentum : \vec{J}

Magnetic hyperfine fields in solids

Example: The magnetic 3*d*- and rare earth (4*f*-) metals

3d ferromagnets Fe, Co, Ni : Stoner model

4f ferromagnets: RKKY theory of indirect coupling

Fe, Co, Ni - Stoner model of itinerant d-electron magnetism

Bandstructure of transition metals (schematic)

$$n_{d\uparrow\uparrow} - n_{d\downarrow\downarrow} = 0$$
; $n_{s\uparrow\uparrow} - n_{s\downarrow\downarrow} = 0$

Exchange interaction

$$\boldsymbol{H}_{ex} = -\boldsymbol{J}_{ex} \boldsymbol{S}_{\uparrow} \cdot \boldsymbol{S}_{\downarrow}$$

$$n_{S^{\uparrow\uparrow}} - n_{S^{\downarrow\downarrow}} = |\Psi_{S^{\uparrow\uparrow}}(0)|^{2} - |\Psi_{S^{\downarrow\downarrow}}(0)|^{2} > 0$$
Fermi contact field
$$n_{d^{\uparrow\uparrow}} - n_{d^{\downarrow\downarrow}} > 0 \longrightarrow d\text{-moment}$$

 $\mu_{\rm d} = (n_{\rm d} - n_{\rm d}) \mu_{\rm B}$

Hyperfine fields of different probe atoms in ferromagnetic Fe

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012

Illustration of the state of hyperfine field theory

Hyperfine fields at 4d and 5sp impurities in bcc iron

FIG. 3. Calculated hyperfine fields compared to experimental data. The semicore contributions (4s for Rb-Cd) and the contribution from the split-off 5s state (for In-Xe) are shown separately.

The magnetic rare earth elements

The electronic configuration of the free atom : (Xe) 4f ⁿ 5d² 6s¹

Charge state in solids: mostly R³⁺ - (Xe) 4f ⁿ except Ce, Eu, Yb

Crystal and magnetic structures of the rare earth metals

Metal	Para.moment		T_N		T_C
	μ	Obs.	hex.	cub.	
Ce	2.54	2.51	13.7	12.5	
Pr Nd	3.58 3.62	2.56 3.4	0.05	82	
Pm	2.68	0.4	10.0	0.2	
Sm	0.85	1.74	106	14.0	
Eu	7.94	8.48		90.4	203
Tb	9.72	9.77	230		233 220
Dy	10.65	10.83	179		89
Ho	10.61	11.2	132		20
\mathbf{Er}	9.58	9.9	85		20
Tm	7.56	7.61	58		32

The 4f wave function

The 4f charge distribution

4f electrons:

- Inner electrons, highly localized within the Wigner Seitz cell
- strongly anisotropic charge distribution
- well protected by the outer shells

- pronounced chemical similarity
- orbital angular momentum unquenched
- strong crystal field interaction magnetically hard materials
- huge orbital fields at the R nuclei
- very little 4f-4f overlapp

Magnetic properties of *R*³⁺ ions

RKKY theory of indirect 4f-4f coupling

Spin dependence of the ¹¹¹Cd hyperfine field in RCo₂ and RAI₂

$$\boldsymbol{B}_{hf} \propto \Gamma(\boldsymbol{g}-1) \sum_{i} \boldsymbol{F}(2\boldsymbol{k}_{F}\boldsymbol{R}_{i})$$

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012